417150

D 50668

(**Pages : 4**)

Nan	ne	 •••••	
Reg	. No		

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 08—LINEAR PROGRAMMING

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

- 1. Define polyhedral convex set. Give an example of a polyhedral convex set in \mathbb{R}^2 .
- 2. Convert the following linear programming problem into canonical form :

Maximize f(x, y) = -2y - x subject to $2x - y \ge -1$ $3y - x \le 8$ $x, y \ge 0.$

- 3. Define canonical slack maximization linear programming problem.
- 4. Pivot on 5 in the canonical maximimum tableau given below :

x_1	x_2	- 1		
1	2	3	=	$-t_{1}$
4	5	6	=	$-t_2$
7	8	9	=	f

- 5. Define negative transpose.
- 6. If a canonical maximization linear programming problem is unbounded, prove that the dual canonical minimization linear programming problem is infeasible.

Turn over

417150

D 50668

- 7. Explain the following terms :
 - a) Two person zero sum game ;
 - b) Pay off matrix ; and
 - c) Domination in matrix game.
- 8. State Von Neumann minimax theorem.
- 9. Let $x, y \in \mathbb{R}$ and consider the matrix game given below :

$$\begin{bmatrix} I \ I \\ x \ 0 \\ 0 \ y \end{bmatrix}$$

Determine a necessary and sufficient condition for the matrix game above to reduce by domination to a single entry.

 $\mathbf{2}$

- 10. Distinguish between balanced and unbalanced transportation problem.
- 11. Explain briefly the north west corner method to obtain the initial basic feasible solution in transportation problem.
- 12. Define cycle in a tableau of a bounded transportation problem and give an example.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

13. Using graphical method to solve the following linear programming problem :

Maximize f(x, y) = x + y subject to

$$x - y \le 3$$

$$2x + y \le 12$$

$$0 \le x \le 4$$

$$0 \le y \le 6.$$

14. Write the simplex algorithm for maximum tableaus.

D 50668

15. Solve the noncanonical linear programming problem given below :

Maximize f(x, y, z) = 2x + y - 2z subject to $x + y + z \le 1$ y + 4z > 2 $x, y, z \ge 0.$

- 16. Prove that a pair of feasible solutions of dual canonical linear programming problems exhibit complementary slackness if and only if they are optimal solutions.
- 17. Solve the dual canonical linear programming problem given below :

	x_1	x_2	- 1		
y_1	- 1	- 1	- 3	=	$-t_1$
\mathcal{Y}_2	1	1	2	=	$-t_2$
- 1	2	- 4	0	=	f
	$=s_1$	$=s_2$	= g		

18. Find the von Neumann value and the optimal strategy for each player in the matrix game given below :

		II	
	2	- 3	2
I	- 3	4	- 3
	2	- 3	6

19. Solve the following transportation problem :

2	1	2	40
9	4	7	60
1	2	9	10
40	50	20	

Turn over

417150

417150

D 50668

4

Section C

Answer any **one** question. The question carries 10 marks.

20. Apply simplex algorithm to solve the following maximum tableau :

x_1	x_2	- 1		
- 1	- 2	- 3	=	$-t_1$
1	1	3	=	$-t_2$
1	1	2	=	$-t_3$
- 2	4	0	=	f

21. Write the Hungarian algorithm. Using this algorithm solve the following assignment problem;

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	5	10
	10	9	7	13
12 13 12 17	7	11	8	13
	12	13	12	17

 $(1 \times 10 = 10 \text{ marks})$