D 99	3275 (Pa	ges: 4)	Name									
Du	1210 (Fa	iges: 4)	Reg. No									
	EIDCT CEMECTED M A DECD	EE (DECIHAD										
	FIRST SEMESTER M.A. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020											
(CBCSS)												
	Eco	nomics										
ECO 1C 04—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS—I												
(2019 Admissions)												
Time	: Three Hours		Maximum: 30 Weightage									
General Instructions												
1.	In cases where choices are provided, stude	nts can attend all qu	uestions in each section.									
2.	The minimum number of questions to be a	ttended from the Sec	ction/Part shall remain the same.									
3.	. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.											
	Part A (Multiple Choice Questions)											
Answer all questions.												
1.	Each question carries $\frac{1}{4}$ weightage. If A and B are matrices of order 3×2 and 2×1 respectively, then the product AB is of order :											
1.	(a) 3×3 .	(b) 3×4 .	iteli the product AB is of order.									
	$\begin{array}{ccc} \text{(a)} & \text{3 \times 3.} \\ \text{(c)} & 2 \times 3. \end{array}$	$(d) 2 \times 4.$										
2.												
	(a) Minor.	(b) Signed minor	. / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
	(c) Diagonal element.	(d) Characteristic	c root.									
3.	If A is a singular matrix, then A^{-1} is:											
	(a) Non-singular.	(b) Singular.										
	(c) Symmetric.	(d) Not defined.										
4.	The determinant value of the matrix $\begin{bmatrix} -4 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -4 \end{bmatrix}$ is:										
	(a) 22.	(b) - 22.										
	(c) 10.	(d) - 10.										
			T									

5.	Find	the	equilib	rium	price	if	the	demand	and	supply	functions	are	given	by
	D = -	9 + p	and $S = -$	-3-p										

(a) 2.

(b) 3.

(c) 4.

- (d) 5.
- 6. Derivative of $f(x) = e^x$ at x = 0 is:
 - (a) 0.

(b) 1.

(c) e.

- (d) 1
- 7. If R is the total revenue, the marginal revenue is:
 - (a) $\frac{R}{x}$.

(b) $\mathbf{R} \times x$.

(c) $\frac{x}{R}$

- (d) $\frac{d\mathbf{R}}{dx}$
- 8. The slope of the equation 2x 4y + 4 = 0 is:
 - (a) $\frac{2}{3}$.

(b) $\frac{3}{2}$

(c) $\frac{1}{2}$

- (d) 2.
- 9. Find the last term of the series $-3, -1, 1, \dots$ 40 terms:
 - (a) 75.

(b) 65.

(c) 30.

(d) 85.

- 10. The integral of $6x^2$ is :
 - (a) $6x^3$.

(b) $2x^3$.

(c) $2x^2$.

- (d) $6x^2$.
- 11. The inverse process of integration is:
 - (a) Matrix inversion.
- (b) Matrix multiplication.

(c) Differentiation.

(d) Optimization.

- 12. Find $\lim_{x \to 2} x^5 + 7$:
 - (a) 32.

(b) 39.

(c) 36.

(d) 33.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

3 **D 93275**

Part B (Short Answer Type)

Answer any **five** out of eight questions. Each question carries 1 weightage.

- 13. Define characteristic equation md characteristic roots.
- 14. Explain the rules of limits.
- 15. Define continuity of a function. Check the continuity of $f(x) = \frac{1}{x-2}$ at x = 2.
- 16. Solve the differential equation $\frac{dy}{dx} = \frac{y}{1+x}$.
- 17. Differentiate $y = \frac{x^3 + 2x}{x^2 + 1}$ with respect to x.
- 18. If average revenue is Rs. 40 and the elasticity is 5, find the marginal revenue.
- 19. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 6 & 7 \end{bmatrix}$. Verify that $(AB)^T = B^T$. A^T .
- 20. Find the sum of 10 terms of an arithmetic progression whose 7th term is 30 and 13th term is 54.

 $(5 \times 1 = 5 \text{ weightage})$

Part C (Paragraph Type)

Answer any **seven** out of ten questions. Each question carries 2 weightage.

21. Solve the following equations by using Crammer's rule:

$$2x_1 + 3x_2 = 13$$
 and $x_1 + 7x_2 = 23$.

- 22. Find the rank of $A = \begin{bmatrix} 1 & 2 & 0 & 5 \\ 3 & 1 & 2 & 2 \\ 2 & 4 & 0 & 10 \end{bmatrix}$.
- 23. A company has examined the cost structure and has determined that $C = 100 + 0.015x^2$ and R = 3x where C is the total cost, R is the total revenue and x is the number of units produced. Find the production rate x that will maximize profits of the company. Find out that profit.
- 24. Define price elasticity of supply. Find the elasticity of supply when price = 5 units. Supply function is given by $q = 25 4p + p^2$ where q is the supply at price p.

Turn over

4 D 93275

- 25. Define total differential. Find the total differential of $z = \frac{x}{x+y}$
- 26. Explain various functions in Economics.
- 27. The sum of three numbers in a geometric progression is 35 and their product is 1000. Find the numbers.
- 28. Evaluate the following definite integrals:

(a)
$$\int_{1}^{3} (x^3 + x + 6) dx$$
; and (b) $\int_{1}^{3} (4x^3 + 6x) dx$.

- 29. Explain the optimization techniques using Lagrangian multiplier method. Maximize the utility function $U = 4xy y^2$ subject to the constraint 2x + y 6 = 0.
- 30. If $z = \frac{x^2y^2}{x+y}$, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$.

 $(7 \times 2 = 14 \text{ weightage})$

Part D (Essay Type)

Answer any **two** out of four questions. Each question carries 4 weightage.

31. Solve the following equations using matrix inversion method:

$$2x + 4y - z = 15$$

$$x - 3y + 2z = -5$$

$$6x + 5y + z = 28$$
.

- 32. (a) The cost for a monopolist firm producing x items per week is given to be $4x^2 80x + 500$ rupees. To have minimum Cost, how many units should be produced per week?
 - (b) Revenue function of a firm is given by $R = 14x x^2$ and the cost function is $C = x(x^2 2)$. Find (i) Average cost; (ii) Marginal cost; (iii) Marginal revenue; and (iv) Equilibrium position.
- 33. (a) $z = \frac{x^3 y^3}{xy}$ show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.
 - (b) If $u = x^3 3xy^2$ and $v = 3x^2y y^3$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$.
- 34. India's population in 1950 and 1967 was 36 and 51.4 crore persons respectively. Find the annual arithmetic and geometric rate of growth.

 $(2 \times 4 = 8 \text{ weightage})$